Isometric dilations and $H^\infty $ calculus for bounded analytic semigroups and Ritt operators
نویسندگان
چکیده
منابع مشابه
Partially Isometric Dilations of Noncommuting N-tuples of Operators
Given a row contraction of operators on Hilbert space and a family of projections on the space which stabilize the operators, we show there is a unique minimal joint dilation to a row contraction of partial isometries which satisfy natural relations. For a fixed row contraction the set of all dilations forms a partially ordered set with a largest and smallest element. A key technical device in ...
متن کاملBounded R00-calculus for Elliptic Operators
It is shown, in particular, that L p-realizations of general elliptic systems on Rn or on compact manifolds without boundaries possess bounded imaginary powers, provided rather mild regularity conditions are satisfied. In addition, there are given some new perturbation theorems for operators possessing a bounded H00-calculus. 0. Introduction. It is the main purpose of this paper to prove under ...
متن کاملThe stochastic Weiss conjecture for bounded analytic semigroups
Suppose −A admits a bounded H∞-calculus of angle less than /2 on a Banach space E which has Pisier’s property (α), let B be a bounded linear operator from a Hilbert space H into the extrapolation space E−1 of E with respect to A, and let WH denote an H-cylindrical Brownian motion. Let γ(H,E) denote the space of all γ-radonifying operators from H to E. We prove that the following assertions are ...
متن کاملSemiflow of analytic functions and semigroups of composition operators
Abstract The study of analytic semiflows on the open unit disc and the particular form of its infinitesimal generator G makes possible the study of semigroups of composition operators (T (t))t≥0 on various well-known spaces of holomorphic functions such as Hardy, Dirichlet and Bergman spaces. We will provide compactness, analyticity and invertibility complete characterization of (T (t))t≥0 in t...
متن کاملNon commutative functional calculus: bounded operators
In this paper we develop a functional calculus for bounded operators defined on quaternionic Banach spaces. This calculus is based on the notion of slice-regularity, see [4], and the key tools are a new resolvent operator and a new eigenvalue problem. AMS Classification: 47A10, 47A60, 30G35.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6849